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Abstract

In this paper, we study and compare different proposals of heavy-tailed
(possibly skewed) distributions as robust alternatives to the normal model.
The density functions are all represented as scale mixtures which enables
efficient Bayesian estimation via Markov chain Monte Carlo (MCMC) meth-
ods. However, while the symmetric versions of these distributions are able
to model heavy tails they of course fail to capture asymmetry for example
when the data set contains extreme values in one of the tails. Therefore,
distributions that accommodate skewness as well as fat tails are also taken
into account.

Key words: Scale mixture of normals, scale mixture of uniforms, skewed
distributions, MCMC.

1 Introduction

In this paper, we study and compare different proposals of heavy-tailed (possibly
skewed) distributions as robust alternatives to the normal model. The density
functions are all represented as scale mixtures as for example in Choy and Smith
(1997) and Choy and Chan (2008). This enables efficient Bayesian estimation
via Markov chain Monte Carlo (MCMC) methods. We begin by describing and
reviewing a number of scale mixture representation proposals in the literature for
symmetric distributions.

A rich class of continuous symmetric and unimodal distributions can be ex-
pressed as a scale mixture of normal distributions as defined below.

Definition 1.1. A continuous random variable X is said to have a scale mizture
of normal distributions with location parameter p and scale parameter o if,

) = [ met) e { -5t - w2 s
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where k() is a positive function, X is a positive random variable and H is a dis-
tribution function such that H(0) = 0.

H is usually refered to as the mixing distribution function. In this case, the random
variable X admits the stochastic representation

X = p+ (N,

where Y ~ N(0,0%) so that X|\ ~ N(u,k(\)o?). Therefore, the unconditional
mean and variance of X are given by,
E(X) = EEX[N] =pn
Var(X) = E[Var(X|\)] = c*E(k(\).

The standardized version of the distribution of X is then obtained by setting
_ X
- 0EV2(k(N))

so that E(Z) =0 and Var(Z) = 1 and the density function of Z is given by,

_ 1 ~ 2y—1/2 E(k(N)y”
f(z) = UEl/Q—(/i()\))/O (2rr(N)o?)~Y exp{—T(/\)}dH()\).

For example, the Student ¢ distribution with location parameter u € R, scale
parameter o > 0 and shape parameter v > 0 is obtained by setting x(\) = 1/\ and
assigning A ~ Gamma(v/2,v/2). In this case, we can use the following hierarchical
form

X|p,o,X ~ N(u,0?/))
Ay~ Gamma(v/2,v/2).

The unconditional mean and variance of X are given by,

E(X) = p

Var(X) = o®B(\) =o’- - S v>2,

since ™! ~ IG(v/2,v/2) where IG(-,-) denotes the Inverse Gamma distribution.

Many other distributions can be represented in this fashion. For example, if the
mixing distribution is Gamma(v/2,§/2) we have a Pearson Type VII distribution
(Johnson et al. 1994) with shape parameters v and § (when v = § we recover
the Student ¢ distribution). If the mixing distribution is Beta(v, 1) we obtain the
Slash distribution (when v — oo we recover the normal distribution). Barndorf-
Nielsen (1978) obtained the generalized hyperbolic distribution as a scale mixture
of normals using the generalized inverse Gaussian as a mixing distribution. In the
following sections we describe other heavy-tailed distributions and other forms of
scale mixtures proposed in the literature.
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2 Other heavy-tailed distributions and scale mix-
tures

As another heavy-tailed distribution we consider the generalized error distribution
(GED) also known as exponential power distribution (Box and Tiao 1973). Here,
we use the definition that appears for example in Gémez et al. (1998).

Definition 2.1. A continuous random variable X has a generalized error distri-
bution with parameters u, o and [ if its density function is given by,

1 1
oT (1 + )21/ P <_§

fx|p,o,B) =

where i € R and 0 > 0 are the location and scale parameters respectively and
B > 0 determines the kurtosis of the distribution.

We refer to this distribution as GED(u, 0, ). Important special cases of the
GED are, the Laplace (or double exponential) distribution for 5 = 1/2 and the
normal distribution for § = 1. The kurtosis of this GED distribution is given by
['(1/28)T(5/28)/T(3/28)* — 3 so that values 0 < 8 < 1 lead to leptokurtic distri-
butions while values 8 > 1 lead to tails thinner than in the normal distribution.

Choy and Smith (1997) obtained the GED distribution as a scale mixture of
normals for 8 € (0.5,1], a result latter extended by Walker and Gutiérrez-Pena
(1999) who proposed a new representation that is valid for the entire range of f.
The representation proposed is a scale mixture of uniform distributions (see also
Fung and Seneta 2008).

Definition 2.2. A continuous random variable X is said to have a scale mizture
of uniforms representation if its density function can be expressed as,

o) = /0 " ol = w(u)o, -+ r(u)o)dH ().

where fy(a,b) denotes the uniform density function on (a,b), p and o are the
location and scale parameters, k(-) is a positive function and u is a positive random
variable.

Note that the uniform distributions in the mixture have the same mean p but
different supports controlled by the mixing variable u. The unconditional mean
and variance of X are then obtained as,

E(X) = p

Var(X) = E[Var(X|u)]:%E(n2(u)).



Theorem 2.1. The generalized error distribution can be expressed in the following
hierarchical form,

Xlu ~ U (j— 20828112 1y 4 90-8)/28 5y, 1/28)

1
~ G 1+—,277).
U amma( +25, )

Proof. This follows from writing the joint density of X and u as,
f|u) f(u) oc u VT (u > ) ul/? exp(—27Pu)
where,

T —
g

2
§=20"" ‘

So, the marginal density of X is given by,
flz) / I (u>6)exp(—27"u)du
0
x / exp(—2"%u)du
5

( ; 26)
X exp —5

and we can conclude that X ~ GED(u, o, f3). O

T —p
g

Under this hierarchical representation it is easy to obtain the unconditional mean
and variance of X,

9(1-8)/8 52
—
20-PA)/Bg2 (2-B)1+1/25 r (1 + %)
3 9-B)113/28
r (1 4 %) (277)
/B 3
2 (25> 2
—y 7
r(4)

Note that, since the normal distribution is a special case of the GED when
£ =1 it also admits a scale mixture of uniforms representation,

Var(X) = E[Var(X|u)] = E(ul/’B)

Xlu ~ U(M—aulﬂ,u—l—aul/g)

31
u ~ Gamma (5,5)
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Therefore, Definition 1.1 can be rewritten using the following hierarchical repre-
sentation,

Xlu, A~ U (= s\)2ou? g+ k(A 2ou'/?)

31
~ G e I
U amma(2,2)

so that, as noted in Choy and Chan (2008), in theory a density function represented
as a scale mixture of normals also admits a scale mixture of uniforms representation.

McDonald and Newey (1988) introduced a flexible symmetric and unimodal
distribution as another robust alternative to the normal distribution which they
called the generalized t distribution. Its density function is given by,

pl’ (q + %) 1 p\ —(a+1/p)
< ) , reR

T —p
= 1 1+ =
1 ES
2¢'/Pol (,,)F(q)

(@) -

q

where p and o are location and scale parameters respectively and p > 0 and
g > 0 are two shape parameters. We refer to this distribution as GT'(u, o, p, q).
Larger values of p and ¢ yield a density with thinner tails than the normal while
smaller values are associated with thicker tailed densities. Also, it includes other
well known symmetric unimodal distributions as special or limiting cases. For
example, the ¢ distribution with v = 2¢ degrees of freedom and scale o = 2720 is
obtained when p = 2 and consequently the normal distribution with mean p and
variance 02 /2 is obtained when p = 2 and ¢ — co. The GED in Definition 2.1 with
location p, scale 27 /Pg and p = 2/ is obtained when ¢ — oco. For the purposes of
this paper, the important feature of the generalized t distribution is that it can be
represented as a scale mixture of a GED with a generalized Gamma as the mixing
distribution, a result obtained by Arslan and Geng (2003).

Theorem 2.2. The generalized t distribution with parameters p, o, p and q can
be expressed in the following hierarchical form,

2¢*/PI'(3/p)o” 2)
sU(1/p)  'p
s ~ GG(q,1,p/2),

X|s ~ GED (u,

where GG(-,-,-) denotes the generalized Gamma distribution.
Proof. See Arslan and Geng (2003).

Recently, Choy and Chan (2008) proposed to represent the generalized t as a
scale mixture of uniforms in order to overcome difficulties to handle the distri-
bution in the above representation. This can be accomplished by expressing the



distribution hierarchically as,

1
u ~ Gamma <1—|——,1)
p

s ~ GG (g,1.0).
2

These authors compared various scale mixtures as sampling distributions for a real
dataset. They adopted a Bayesian approach to estimate parameters via MCMC
and performed model comparison in terms of Deviance Information Criterion (DIC,
Spiegelhalter et al. 2002). However, while these distributions are able to model
heavy tails they fail to capture asymmetry for example when the data set contains
extreme values in one of the tails. Therefore, distributions that accommodate
skewness as well as fat tails should be taken into account too. In the next section,
we propose to consider a class of skewed distributions and show that they inherit
the scale mixture representation of their symmetric counterparts.

3 Introducing Skewness

There are a number of proposals in the literature to introduce skewness in symmet-
ric unimodal distributions. The most common way to create a univariate skewed
distribution is to introduce skewness into an originally symmetric distribution. In
this approach, skewed distributions can be generated by for example, hidden trun-
cation models (Azzalini 1985), inverse scale factors (Fernandez and Steel 1998),
and order statistics (Jones 2004). All these methods have the advantage of pre-
serving at least a subset of the properties of the original symmetric distribution,
which are often well known.

In particular, Fernandez and Steel (1998) presented a general method for trans-
forming any continuous unimodal and symmetric distribution into a skewed one
by changing the scale at each side of the mode. They proposed the following class
of skewed distributions indexed by a shape parameter v > 0, which describes the
degree of asymmetry,

steh) = =2 {7 (£) o (@ + SN T (@)} )

T+1/y

where f(+) is a univariate density symmetric around zero and I¢(+) is an indicator
function on C. Note that 7 = 1 yields the symmetric distribution as s(e|y = 1) =
f(€e), and values of v > 1 (< 1) indicate right (left) skewness.

Our preference for this skewing mechanism is mainly due to its simplicity and
generality. Moments calculation is straightforward if the moments of the under-
lying symmetric distribution are available and it does not require calculation of
cumulative distribution functions, which yields faster computations. Also, it en-
tirely separates the effects of the skewness and tail parameters thus making prior



independence between the two a plausible assumption, and hence facilitates the
choice of their prior distributions.

A continuous random variable X with location and scale parameters ; € R and
o > 0 can be represented as X = u + o€ and its density function is then given by

s(zly) = m {f (%) Tjo00)(x — ) + f (@) I ooy (2 — u)} :

Thus, s(z]v) is the skewed version of the location-scale density f(-) preserving the
mode .

Choosing f(-) to be the standard normal density we obtain the skewed normal
distribution with parameters p, o and v denoted SN (u, o, ) and density function
given by,

s(ah) = (%)/ e

1 /x—p 21
_z — 1900 (z — I o —
eXP{ 2< . ) (72 0.00) (T = 1) + 7V (oo 0y (T M))}

while choosing f(-) to be the standard Student ¢ density we obtain the skewed
Student distribution with parameters p, o, v and v denoted SST D(u, o, v,~y) and
density function given by,

2T (“44)
ol (5)(y + 1/7)(mv)1/2

1 (fz—p (1 9 7
14+ — —Iig.00) (T — I — .
[ +V( - > {72 0.00) (T — 1) + 7V [0 0) (¥ M)}]

This can be represented as a scale mixture of skewed normals in the following
hierarchical form,

s(zly) =

XA~ SN(u,a%/X,7)
A~ Gamma(v/2,v/2).

We shall assume that all the parameters are a priori independent. Noninforma-
tive prior distributions for y and 7 = o~! are assigned as p(u, 7) o< 77! Following
Fernandez and Steel (1998), we shall use a Gamma(a,b) prior distribution on
¢ = ~? which is the ratio of probability masses above and below the mode, i.e.
7v? = Pr(e > 0)/Pr(e < 0). So, for observed data © = (21, ...,z,) the complete
conditional distributions in the skewed normal model are given by,

1 — ,
7'2|a:,,u, ¢ ~ Gamma (g’ 5 Z(xz _ H)Q(bszgn(xiu))
i=1

2 4
i=1

2 n
F@la, 1, 7) oc g2 (G + 1) exp {‘T_ 3 (s — )2 iontim) b¢>}
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2 n
F (e, 7. 6) ox exp {—% > (e = 0 (o 01— ) + 0l el = 1) } |

i=1

The complete conditional density of ¢ is not of any standard form and we use
a Metropolis-Hastings algorithm. The complete conditional density of p will be
rewritten in a form which allows to easily draw values. Ordering the observations

a1y < @) < -0 < x) and defining the sub-intervals Sy = (—o0,zy)], S, =
(@ny, x(hey)s h=1,...,n—1and S, = (z(n), 00) it follows that,
Sl 5 wemn{ - |ty + 3 sty | o
i=h-+1
=2 "
exp {—5 —2p (Z oz (i) + Z x(z‘)/</5> + 12 (he + (n — h)/¢)] }
L i=1 i=h+1
7—2 2p 2 2
X expq T Zcbxwr Z xly /o pexp (1" = 2ppn)
i=h-+1
2 P, 2
X exp§ —— ZCW l)+z;—&—lx(z )/ & = pupiy | ¢ exp{ — 5 (1= hn)

where p, = ho + (n — h)/¢ and ppu, = Z?Zl Gx(y + >0 T /¢ Then, the

complete conditional density of 1 can be written as,

n 2
Pl ) 5 3 e { =Tl 17 1)

where 1), = 30| Gy + i1 Ty /® — priy and f([m, c) denotes the density
function of a normal distribution with mean m and variance ¢. So, in order to
draw a value of y we randomly choose a sub-interval Sy, h = 0,...,n and sample
a value from a N (uy,, 1/7%py,) distribution truncated to Sj,.

In the skewed Student model written in the hierarchical form
XN ~ SN(u, (72X)7 1, 7) and \; ~ Gamma(v/2,v/2), we need to specify a
prior distribution for the degrees of freedom parameter v. In order to avoid intro-
ducing strong prior information while not bounding v away from zero we assign
an exponential prior distribution with both mean and standard deviation equal to
10. Also, we assume that the mixing parameters \; are a priori independent. The
complete conditional distributions are then obtained in a similar vein using this
hierarchical form of the skewed Student. It follows immediately that,

1 — .
7@, 1, ¢, X ~ Gamma (g 5 D Al u)%—“m—“))
i=1
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F(8la, 1,7, X) oc g2 (G + 1) exp{——ZA 10)2psion(@i—n) —b¢}

Pl .30 5 3= e exp{ T i 150, 1)

where

o = me Z i/

i=h+1

Phitn = ZQb/\ TGy + Z i iy /¢

i=h+1

h = wa( £ 3 Nadyfo - pusd

i=h+1

fwlz, p, 7,6, X) o< p(Alv)p(v)

(v/2)"

B+ % ;(AZ —log )\l)] }

JN[a, p,m,0) oc s(@p, 7,0, X) f(A)
n 2
(u+1)/2—1 Y z T_ N2 p—sign(xi—p)
o i|:|1 Ai exp{ Ai {2 + (@ — )¢ }}

We now have that the complete conditional densities of ¢ and v are not of standard
forms and Metropolis-Hastings schemes are used to sample their values.

Finally, we obtain the skewed GED with parameters p, o, § and v, denoted
SGED(u,0,,v) by choosing f(-) to be the standard symmetric GED. Its density
function is given by,

(z]) = 2
T G T )2

1 !
exp {—5 (WI[O,oo) (x —p) + VQﬂI(—w70)<x - “)) } (2)

and the SN (u,o,v) distribution is obtained as a special case when § = 1. In the
next theorem we show that this skewed version of the GED can also be represented
as a scale mixture.

T —p
g




Theorem 3.1. The skewed generalized error distribution can be expressed in the
following hierarchical form,

Xlu,y ~ SU (— 20702851128 1y 4 9(0=P)/2851/28 )

1
~ G 14—, 277
U amma( +2,8’ ),

where SU (a,b,~y) denotes the skewed version of the Uniform distribution.

Proof. This result follows from,
s(z|u, ) oc w1 (u > 61) g o) (2 — 1) + I (w0 > 62) (oo 0)(x — )]

where,

28

T —
e

o

T—p
ag

51 = 2B_1 and (52 = Qﬁ_l 2ﬂ.

2p
e

So, integrating with respect to u the above density times the density function of u
we obtain,

s(zly) o« /5 exp(—Q’ﬁu)duImm)(m — 1) +/5 exp(—2’5u)du[(_oo,0)(a: — 1)
1 2
Le—ul® /1
x exp{—§ Uu‘ (@ Tjp,oo) (@ = p1) + 7 f(—oo,o>(fv—u)>}
and X ~ SGED(u,0,5,7). ]

This result allows us to propose a skewed version of the generalized t distribu-
tion thus increasing its flexibility while enabling efficient Bayesian estimation via
MCMC methods by representing it as a scale mixture. Applying the same skewing
mechanism and choosing f() to be the standard generalized Student ¢ density we
obtain the skewed generalized Student distribution with parameters u, o, p, ¢ and
v denoted SGT (i, 0,p,q,7) with density function given by,

P (q + ,%)
o(y+1/7)g"/PT (§> I'(q)

[ 1
14—
q

s(zly) =

T —p
ag

P/ —(g+1/p)
—Ij,00) (T = 1) + VP (—s0,0)(z — 1) .(3)
fyp

It is not difficult to see that setting p = 2 we recover the skewed ¢ distribution with
2¢ degrees of freedom and scale 27'/2¢. The skewed normal distribution is then
obtained when ¢ — oo. In what follows we propose alternative representations
for this skewed distribution.
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Theorem 3.2. The skewed generalized t distribution can be expressed in the fol-
lowing hierarchical form,

Xl|s,y ~ SGED (u,zfl/p571/2q1/pa’gﬁ)
s ~ GG(p/2,1,q9).

Proof. Taking density (2) with scale parameter 27'/?s71/2¢'/P and 3 = p/2 and
the density of a GG (p/2,1, q) it follows that,

1
s(als, ) F(s) o sl/Qexp{—sp/Z—

p
T — U 1 »

1
exp {—319/2 {1 + -
q

p <%I[o,oo> (v = 1)+ ooy (v u))} } |

T — i
g

Now setting y = s?/2 it is easy to see that,
0

1|z —
exp{—y{l—i—a i

o

P
(%I[o,oo) (= 1) + P00y (@ — u))} } dy

1l — U p 1 —(q+1/p)
14~ i) (z — PI oo (a —
o { + - (71) 0,00) (7 = 1) + Y [(—o0,0) (2 M))}
and the normalizing constant is the one given in (3). O

Lemma 3.1. The skewed generalized t distribution can be expressed in the following
hierarchical form,

Xl|u, s,y ~ SU (u — ¢MPsT V2N PG 4 gt P s T2y g, fy)
u ~ Gamma <1 + ]13, 1)
s ~ GG(p/2,1,q9),
where SU (a,b,v) denotes the skewed version of the Uniform distribution.

Proof. The (skewed) conditional density of X given u and s can be written as,

s(zlu, s,7) oc s72uYP[I (> 61) o ooy (7 — 1) + T (1 > 02)I(_ a0 0)(z — )]

11



where,
p

sP/? .

P 1 p/2
51 = — — and 52 = 8—

q 7P
So, the marginal density of X is given by,

T —p
g

T—p
g

s(x|y) o /000 s1/2 [/OO exp(—u)duljy o) (x — 1)+

o1

[ e dulis o )| FacGlor2 1y
02

where foe(+) denotes the density function of the Generalized Gamma distribution.
Now, solving the inner integrals and multiplying by s'/? we obtain (up to a con-
stant) the density function of a SGED(u,27'/7s1/2¢'/?g,p/2,~). From Theorem
3.2 it then follows that X ~ SGT(u,o,p,q,v) and this completes the proof. [

The next step is to obtain the complete conditional distributions of the SGED
and SGT using their scale mixture of uniforms representations. In the SGED model
written in the hierarchical form of Theorem 3.1 we specify the prior distribution
for the kurtosis parameter [ as an inverse Gamma with hyperparameters a and b
and assume that the mixing parameters u; are a priori independent. The complete
conditional densities are obtained below.

flulz, pu,7,8,¢) o s(x|u,p,7,5,¢)p(u)

& exp(—2"Pu;)1 <uZ > 2071 gy — N\% T25¢*ﬂsign(zi7u)) '

n
i=1

So,
wilu_g, x5, 1, 7, B, 0 ~ Gamma(1,277), i=1,....n

truncated to w; > 2071 |a; — p|*? 720~ Psion(wi—w)

[, B, 6,u) o (7P 10 < 72 < 2079/ Pug Priontiin (@, — 1) =2)
i=1
o (THF(0 < 7% < 6)

where ¢ = min{2(1*5)/5u3/ﬁ¢5ig”(“*“)(a:i — )2}

12



F(Bla, 7, ¢u) oc 27m0A28 Ty V#7870 exp(—b/B)

=1
n

H_] (2(1—6)/2ﬂu;/25 > |z — p T¢—sign(wi—u)/2>

i=1

1
o exp{ 25 (—nlog + E log(u; )} ~(@t) oxp(—b/p)
- log(2ui)
I .
[11 (0 <4< sy Sy o)

x B exp {b—i— —% (——log Zlog U; )} (0 < p <),

where & = min{log(2u;)/2log(2"/? |z; — p| T¢~*9"@=1/2)} Tt then follows that,

—nlog(2) + Z log(ui)] >

truncated to 0 < < ¢ where I/G(a,b) denotes the Inverse Gamma distribution
with parameters a and b and mean b/(a — 1).

1
6’w7M7T7¢7uN1G (aab+§

f(@lz, p, 7, 8,u) ¢a+n/2_1(¢+1)_”eXp(—b¢)
HI <¢—szgn Ti— < 2 (1— B)/B 1/5 2( o N)—2>

—.

f(plz,0,B,7,u) o I (_2(1—6)/2%?/2/3 < u,y—sign(aci—,u) - 2(1_5)/2,%1/2/3)
KA O_ i

i=1

®

[(x; — 0y < p < i+ 0y)(x; > p)+
=1

I —0i)y < p <ai+ 8 /7)) (x; < p)

where §; = 2(1-8)/28,,] /*% . The complete conditional distribution of 1 is obtained
in a similar vein as with the SN and SSTD models, i.e. by ordering the observations
a1y < @) < -0 < xqy) and defining the sub-intervals Sy = (—o0,z(y)], Sp =
((ny, x(hs))s h=1,...,n—1and S, = (2(n),00). It then follows that,

h

0 i
f(#|=7370a/6a%U7M€Sh H ( )_;<M<I(Z)+7)

i=1

H ( (%) Z’)/<,U<CL’(1 +5z’y)
=h+

13



from which we obtain that,
f(u|w70—7ﬁ777ua,u S SO) X HI(:U(’L) - 52’7 < U< T@) + 517)
i=1

x I<max{min(x(,~) —0;7), 1) — Y} < p < :U(l))
i=1

x I<x(n) < p < min{max(z @) + 6;/7), Tm) + 5n/7}>

fplx, o, B,v,u,u € Sp) o< I(a<p<b)

where a = max{min(z¢ — §;7),zu)} and b = min{max(zu + 6;/7), T(h+1)} for
h =1,....,n—1. So, in order to draw a value from the complete conditional
distribution of 1 we randomly choose a sub-interval S;,, h = 0,...,n and then
sample a value from a uniform distribution defined in one of the above intervals.

Finally, using the hierarchical form given in Lemma 3.1 for the SGT distribution
we specify prior distributions for p and ¢ as Inverse Gamma and assume that the
mixing parameters u; and s; are a priori independent.

flulz, p,7,p,q,8,¢) o s(x|p, 7,0, qu,s,0) p(u)

lexp(—u) I (u; > |a; — plPrig- w2 22 ) |
=1

X

(2

f(sle,p,7,p,q,u,0) o< s(x|p,7,p,qu,s,0)p(s)
(pg+1)/2—-1
=1

(

f(72|:v,,u,p, q,u, S;¢) X (7'2)”/2_1 HI 0< '7'2 <
i=1

o s exp(—s"?)

7

~

o

Ly — W ,Y—sign(ri—u) < ql/psi—l/2u§/l7)

q2/psi—1u?/p¢sign(ri—,u)
_ (2, — p)?
o (T (0 < 72 < min(5;))

where §; = q2/p3i_1u?/p¢8i9"(“i*“)/(xi — )2

f(@le, 7 p,q,u,8) o ¢ G+ 1) exp(—bo)

n 2/p.—1,2/p_2
H] ¢—sign(1:i—u) < q /psi u; T
(o~

14



flalz, 7, p,u,8,0) o< ¢ TP exp(—d/q)
n . P
T17 (a5 [l = ulrasomtemrzgli2) )
=1

o q P exp(—d/q) I(g > max(d;))

. p
where 9; = [T‘:CZ — u\qb_“g”(”""_“)/Qs;/Q] u; " and ¢ and d are the hyperparameters

in the Inverse Gamma prior distribution of q. The complete conditional distribution
of ¢ is then Inverse Gamma with parameters c+n/p and d truncated to ¢ > max(d;).

Folw, 7. q.u,8.6) o< g P ]ui " pm @ exp(—b/p)

i=1

n , P
L1 ([ st < )
i=1

1 n
—(at+1) ox 2
xX p expq —— | b+ nlog(q) + log(u;
{ p( sl i=1 ol )>}

T (0epe oo )
i=1 10g(7’|xi — u|¢—519n(:ci—y)/2si )

The complete conditional distribution of p is then Inverse Gamma with param-
eters a and b + nlog(q) + > 7, log(u;) truncated to 0 < p < min(J;) where

0i = log(qu;)/ log(r|z; — plg~siomei=m/25/%).

flule, 7.p.qu,s.6) < [[I (—ql/”si_mu;/p < BB sign(ion) < ql/pSZl/2U§/p)
o
=1

i=1
I(z; = 6;)/y < p<xi+ 6 /) (x; < )

where 6; = ¢"/?s;"/*u"’o. So, using the same trick of ordering the observations it

is not difficult to see that,
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=1
X I(max{min(:c(i) — 51-’)/),56(1) — (517} < u < 56(1))
flulz,0,p,q,7,u,p € S,) o< HI(:E@ —0i/y < p <zt 5¢/7)
i=1

x [(m(n) < p < min{max () + 0;/7), Ty + (5n/fy})

fplx,o.p,q,v,u,p €Sy) x Ila<p<b), h=1,...,n—1,

where a = max{min(z ) — 0;7), ¥} and b = min{max(z ) + 4;/7), T(n11) }-

4 Discussion

In this paper, we considered flexible families of distributions which can accommo-
date both heavy tails and skewness. For a particular skewing mechanism applied to
heavy tailed distributions we showed how to obtain scale mixture representations.

From a Bayesian viewpoint, our proposed scale mixture representations of
skewed distributions have the advantage of simplifying the complete conditional
distributions thus making Bayesian computations more efficient. We notice that
most of the complete conditional distributions are either uniform, Gamma or trun-
cated Gamma, thus being easy to sample from. Some complete conditionals are
nonetheless still non-standard which is the case for the tail parameter g in the
(S)GED and the skewness parameter ¢ in all skewed distributions.

A natural extension of the results in this paper would be to consider skewed
multivariate distributions deriving their scale mixture representations and the as-
sociated complete conditional distributions. There are different proposals in the
literature to construct multivariate skewed distributions. Arslan and Geng (2009)
have already derived a scale mixture representation of their In particular, Bauwens
and Laurent (2005) proposed to generalize the method described in Fernandez and
Steel (1998) to the multivariate case, i.e. to construct a multivariate skew distri-
bution from a symmetric one. This is object of current and future research by the
author.
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